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THE HAMILTON-JACOBI EQUATION IN THE NEIGHBOURHOOD 
OF A POSITION OF EQUILIBRIUM* 

R.M. BULATOVICH 

The Hamilton-Jacobi equation is considered in the region of a position 

of equilibrium, which is not a local minimum of the potential energy. If 
the potential has a local maximum, the Hamilton-Jacobi equation has a 
continuous or analytical solution in the neighbourhood of the position 

of equilibrium /l, 2/. In the case of a saddle point a solution is sought 
in complex form. The well-known Bol theorem /3/ on the asymptotic motions 
of a natural mechanical system in the neighbourhood of a position of 

equilibrium is obtained as a corollary. The problem of the presence of 
continuous solutions of the Hamilton-Jacobi equation in cases of degeneracy 

is investigated. 

1. The complex solutions of the Hamilton-Jacobi equation. we will consider 

a holonomic mechanical system with n degrees of freedom (I are its generalized coordinates, 

and y are its generalized momenta), the motion of which is described by the following canonica 

equations: 

x* = aHlay, y* = -aHlax; x = (x,, . . ., xn), y = (Yt, . . ., Yn) (1.1) 

where H (x, y) is the Hamilton function. Then the corresonding abbreviated Hamilton-Jacobi 

equation has the form 

H (X, as/ax) = h (I.21 
where h is an arbitary constant (the energy constant). 

Suppose the function S = S, + iS,;S1,S,:Rn {X) ---f R,i = f/-1 is obtained which satisfies 

Eq.cl.2). We introduce the manifold K = {y = aS,/ax, aS,/ax = 0) in phase space R"'{X, y}. 

Theorem 1. If the point (x0, y") E K, the solution of the canonical system with initial 

condition (X0, y") as a whole lies on K. 

Proof. Note that in view of Eqs.cl.1) 

By differentiating (1.2) with respect to Xi, we obtain Xa IK = 0, (2, + aff/ax& = O,.which 

proves the theorem. 
Note that if S,-0, the manifold K is Lagrangian. 

2. Solutions in the neighbourhood of non-degenerate positions of equilibrium 
of natural systems and the manifolds of the asymptotic motions. Consider a 

natural mechanical system with analytical Hamiltonian 

Hz+2 a'j(X)YiYj + n(X) 
i,j=1 

where (a'j) is a positive-definite matrix of the kinetic energy, while n(X) is the potential 

energy of the system. The Hamilton-Jacobi equation at the zero energy level has the form 

We will assume that x = 0 is the position of equilibrium (dII(O)= 0) and n(O)= 0. 

Without loss of generality, we will assume that in the neighbourhood of a position of equilib- 

rium 
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II,= Jf a,+,,,+a =,i Pa I... a,x?. . . x> 
Akij zzzz 

i ” 
a,+...+a,=‘c 

a;‘,. .,,xrl , . . 12 

(II,, A;j are forms of degree k, while [)6'jII is the unit matrix). 
Eq.(2.1) was investigated in /l/ when the potential energy in the position of equilibrium 

has a non-degenerate maximum. We will consider the general case when the potential energy in 
the position of equilibrium does not necessarily have a maximum. 

The solution of Eq.(2.1) will be sought in the form of a series 

(2.2) 

Substituting it into Eq.(2.1) we obtain Ai = *1/--hi(i = I,..., n). We will take Ai = - 

l/--hi. Then the coefficients of the form St (k = 3, 4, . ..) are determined from the recurrent 
relation 

Since Ai are either real or imaginary numbers, then, if hi Z 0, i = 1, . . . . n (the 
position of equilibrium is non-degenerate), the expression .alA, + . ..+ a,,&, can never vanish 
for negative integer ai, such that a, + .., f a,, = k (k = 3, 4, . ..). Consequently, the forms Sk 
are uniquely defined. The convergence of the power series obtained can be proved by the 
method employed in /l/. 

Thus the following theorem holds. 

Theorem 2. In the neighbourhood of a non-degenerate position of equilibrium a solution 
of Eq.(2.1) exists, which can be represented in the form of the converging series (2.2). 

Note that if S(x) is a solution, then -S(x) is also a solution. Suppose 'hi < 0 for 
i= 1,. ..,m and Ai>0 for i=m+l,...,n(O<m<n). We then have a solution of the 
form S = S, + is,, where 

sl=-+~f~X,‘+S,(X), d'31(0)=0 
i=l 

i=m+l 

Theorem 3. a) If m=O(x=O is the point of minimum potential energy), the invariant 
manifold from Theorem 1 is degenerate in the state of equilibrium. 

c) If m>O, then the m-dimensional manifolds 

K*m = {y = +as,/ax, 0 = a&&z}, z = (xm+l, . . ., 2”) 

are continuously filled by trajectories which asymptotically approach the state of equilibrium 
as t-+fw. 

Proof. Case a) is trivial. The case when m= n is considered in /l/ (systems with a 
continuous potential were considered previously in /2/). Suppose O<m(n. It follows from 
(2.1) that the real and imaginary parts of the solution‘satisfy the relation 

(2.3) 

Consider the system of equations 
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(2.4) 

Since the Jacobian 

the system of EqS.(2.4) can be solved in the neighbourhood of the origin of coordinates. As 

a result we obtain the functions 

&lz+l = fl (x1, . ., x,) (fl (0) = O), 2 = 1, . . ., n - m 

We will differentiate the function. sz* = SE (x1, .7 2m, fl(x~, . . ., Xm), . . ., fn-m (51, ., 
xm)) in view of the system 

as1 
yi= ali ( 1 ~-j/c&+ 2 , 

i ) i=l,...,m 
* 1 * 

(2.5) 

We obtain 

which, in view of relation (2.3), is identically equal to zero. Since 1/-_hlcQ +...+ 

I/-_hma,,,#O for integer negative values of ai such that a, + . . . +a, = k (k = 1, 2, . ..). then 

s,, ss const = 0. 

Consequently, 

Kkm = {y = +dS,/ax, Xm+Z = fl (Xl, . . ., 5,), I = 1, . . ., n - m} 

are invariant m-dimensional manifolds from Theorem 1. Since &Sl, has a maximum (a minimum) 

and the derivative with respect to time, in view of system (2.5), in the neighbourhood of the 

position of equilibrium is positive, K*“’ consists of phase trajectories that asymptotically 

approach a state of equilibrium as t--t-&o. 

Kneser /4/ was the first to prove the existence of asymptotic motions of systems with two 

degrees of freedom in the neighbourhood of non-degenerate positions of equilibrium, in which 

the potential energy has a local maximum. Asymptotic motions in the general non-degenerate 

case have been investigated by Bol /3/. Theorem 3 connects the manifolds of the phase 

trajectories of the asymptotic motions with the solutions of the Hamilton-Jacobi equation. 

We will now consider the more general case of seminatural systems instead of natural 

systems. 
Suppose the Hamilton-Jacobi equation has the form 

+ 2 .yg-bi)(+bb,)+n(+O 
i. ,=l 

where db, (0) = 0, i = 1, . . ., n, i.e. the linearized system is gyroscopically unconnected. Theorem 

2 remains true: in the general non-degenerate case the solutions have the form s' = sl* + 

is,* (S-f --S+), where 

As in Theorem 3, they determine the invariant manifolds of asymptotically phase trajec- 

tories as t4+W and t+--;sr. Unlike the natural case, the phase trajectories are 

projected onto the non-coincident trajectories of asymptotic motions as t-&m. 

3. The degenerate case. In the general degenerate case, Eq.cZ.1) has no analytical 

solution in the neighbourhood of the point x=0. Non-analytical solutions can exist (see, 

for example, /l/j. We will consider the fairly general degenerate case when the expansion 

of the potential energy in the neighbourhood of a position of equilibrium begins with a form 
of even order of the form 2&, = -a2 Ix Iam, m>2, a2 = COnst. For simplicity we will assume 
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that n = 2. Changing to polar coordinates x1 = rcosrp, x2 = rsin cp we can convert Eq.tz.1) to 

the form 

m 

(.f+Z” + $2m+1 r, rNr,,+j (cp) 
j=1 

l=1,2,3 

where the polynomials A:+k (COS%sincp) depend to a certain extent on the coefficients Ah-G 

of the form of the kinetic energy. 
The simplified equation 

has the solution 5' = ar'""/r?8 -t 1. Th e solution of the complete equation will be sought in the 
form 

S= a r.m+1 + 2 
m-t-1 

r*+l+jS,+~+j (cp) 
j=I 

(3.2) 

Theorem 4. A solution of Eq.(3.1) exists, which can be represented in the form of the 
series (3.21, which converges when r is fairly small. 

The following lemma holds. 

Lemma. If a solution of the form (3.2) of Eq.(3.1) exists, where 

A' = A” (8, r, q), 1 = 1, 2, 3 (3.3) 

for fairly small e, which converges when r<r~, then the corresponding solution of Eq.(3.1) 
converges when r< we. 

Proof of the theorem. In view of the lemma it is sufficient to prove that a solution of 

Eq.(3.1), (3.3) exists. Suppose A is a space of functions which can be represented when 
r<r,, by the absolutely converging series. 

f = 5 rm+l+j%il+j(cp); 

j=O 
@m+,+j E C" [O, 2n] 

are infinitely differentiable 2%periodic functions. In this space we specify the norm 

II f III"'= s;P jgi(m i 1 + j)rr+'+jI@%+j 1 

where @th') is a derivative of the k-th order. We will similarly introduce a space B 

f= 5 rzm+jQ~,+j(fp), 

j==o 

II f II2 = SUP t 11 f /I('~)~ ,J 

k 

The spaces A and B are Banach spaces. 
We write Eqs.(3.1), (3.3) in the form F(S, E)= 0 and we will consider F as the mapping 

of a fairly small neighbourhood 

Y = ((8, E): ]] S - S,]] 1 < 6, / e I< EIJ}, So = arm+tim + 1 

into B. 
Thefollowingassertions hold: 1) li(S,,O)= 0.2) The mapping F is continuous at the point 

(80" 0). 3) The derivative Fs’(S, E) exists in V and is continuous at the point (S,,O). 
We will show that the linear operator FB’(SO, 0)== arm8/ar has a limited inverse. In fact, 

suppose 
m 

U = Z rzm+jVzni+j E 3 
j=o 

Then the equation Fs'(S,, 0) tb = u has the solution 
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Consequently, in view of the theorem on an implicit function /5/, for small E in the space 
A there is a solution s(r,cp,e) of the equation F(S (r,cp,c), E)= 0, which differs only slightly 
from So. The theorem is proved. 

Returning to the old variables XI and x2, we obtain at least a function of the class C"'. 
The solutions obtained, as in Sect-Z, define the manifolds y= &%/ax of the phase trajec- 
tories of asymptotic motions (compare with /2/). 
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PERIODIC SOLUTIONS OF HAMILTONIAN SYSTEMS IN CERTAIN DEGENERATE CASES* 

YU.V. BARKIN and A.A. PANKRATOV 

Periodic sclutions of a canonical system of differential equations with 
a special type Hamiltonian, i.e. of the so-called fundamental problem of 
dynamics /I/, are investigated. A method of constructing the conditions 
of periodicity of the solutions is given and a non-linear analysis of 
the solutions is carried out. The method enables the Poincare's classical 
conditions of existence, as well as of the new conditions of existence 
of periodic solutions in degenerate cases to be derived. The cases of 
degeneracy discussed here appear very frequently in various problems of 
dynamics. The results obtained are illustrated by finding new periodic 
solutions for the problem of the motion of a heavy rigid body about a 
fixed point. 

1. Formulation of the Frobkm. Consider the following system of canonical dif- 
ferential equations: 

(1.1) 

I = (pt..., pi)=, J = (pr+m . . . , pN)T, p = (PI, . . . t PN)= = (1, JF 
tp = (41, . , * t qrF* 9 = (qf+lY * . * 3 q.vY* 
q=(q1,. . . t qNjT = (% \plT 
H (p, q, t, IL) = Ho (I) + pH, (p, q, t) + . . ‘7 I I’ I % 1 ,(1.2) 

Let H be an analytic function of the position variables p, the canonical angle variables 
q and the time t, in the region D x TN x T', where D is a bounded connected region RN {pt, 
. . ., piv} of the N-dimensional plane, TN {PI, . . . . q.v mod2n) is an N-dimensional torus and 
T1 (t mod To}. Then the functions Hi(p,q, t)(i> 1) can be expanded in convergent Fourier 
series over the multiple angle variables g and Qt(O _r 2.niT, is the fundamental frequency and 
T0 is the period) 
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